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Bounded Concurrent Time-Stamp Systems
Are Constructible

Danny Dolev*

Abstract

Concurrent time stamping is at the heart of solu-
tions to some of the most fundamental problems
in distributed computing. Based on concurrent-
time-stamp-systems, elegant and simple solu-
tions to core problems such as fcfs-mutual-
exclusion, construction of a multi-reader-multi-
writer atomic register, probabilistic consensus, ...
were deveioped. Unfortunately, the only known
implementation of a concurrcnt tile stamp sys-
temn has been theoretically unsatisfying, since it
requires unbounded size tirne-stamps, in other
words, unbounded memory. Not knowing if
bounded concurrent-time-stamp-systems are at
all constructible, researchers were led to con-
structing complicated problein-specific solutions
to replace the simple unbounded ones. In this
work, for the first time, a bounded implemen-
tation of a concurrent-time-stamp-system is pre-
sented. It provides a modular unbounded-to-
bounded transformation of the simple unbounded
solutions to problems such as above. It al-
lows solutions to two formerly open problems,
the bounded-probabilistic-consensus problem of
Abrahamson [A88] and the fifo-£-exclusion prob-
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lem of [FLBB85), and a more efficient construc-
tion of mrmw atomic registers.

1 Introduction

The paradigm of concurrent time stamping is at
the heart of solutions to some of the most fun-
damental problems in coordination of concurrent
ptocesses [A88, CIL87, D65, DGS88, H88, L74,
PB87, VAS6].

A time stamp system of n asynchronous pro-
cnsges 18 traditionally conceived as coraisting of
n label registers, one per process, written ty it
and read by all others. The labels are unbounded
natural-numbers, where each process can execute
infinitely many labeling and scan operations on
the label registers. A labeling operation is a se-
quence of reads of other labels, followed by a
write of a label greater than the maximal value
read. The label values written, establish a tota;
order on all labeling operations ever executed.
A scan operation 18 a sequence of reads of all
process’ labels, returning a subset of labels or-
dered consistently with this total ordering. A
concurreni-time-stamp-system (ctss) is a time-
stamp-system in which any number of labeling
or scan operatious (by different processes) may
overlap in titne. A major requirement is that
labeling and scan operations of any process be
waitfree, that is, completed in finite time inde-
pendently of the pace of other processes.

Concurrent time stamping is the basis for
simple solutions to a wide variety of the basic
problems in concurrency control. Examples of
such problems include fcfs-mutual-exclusion. con-
struction of a multi-reader-multi-writer atomic




register, probabilistic consensus,... Unfortu-
nately, the only known implementation of the
above paradigm is based on labels of unbounded
size. This is a major drawback, since bounded
meniory size is a key requirement of the prob-
lems at hand, implying these elegant and sim-
ple unbounded solutions have little theoreti-
cal value.  Since it was unknown whether
bounded concurrent-time-stamp-systerns are con-
structible, researchers were led to devising com-
plicated problein-specific solutions to show that
the above problems are solvable in a bounded
way [B197, BP&7 CIL87, D65, DGSSS, TLBBTC,
FLBBS85, K78, L74, L86d, LH8S, LV38, R86, P81,
P83, PB87, VAS6).

Israeii and Liin [IL87) were the first to isolate
the notion of bounded-time-stamping as an inde-
pendent concept, developing an elegant theory of
bounded segtentialtime-stamp-systems, that is,
time-stamp systems in a world where no two op-
erations are ever concurrent. They also devised
a concurrent labeling scheme in which the labels
vrovide a causality preserving relation. However,
this relation is not a total ordering since unre-
lated labels and cycles are possible. Moreover,
this scheme deals only with lebeling, and does
not address the central problem of how labels can
be scanned concurrently, therefore lacking some
of the key properties of concurrent-time-stamp-
systems.

In this paper, for the firsi time, a bounded
construction of a concurrent-time-stamp-system
i8 presented. It allows a modular transforma-
tion of the simple unbounded solutions to such
core problems as above!. It provides a powerful
tool, enabling the design of simple unbounded
concurrent-time-stamp based algorithms, with
the knowledge that such unbounded solutions im-
mediately imply the bounded ones?. This is ex-
emplified by providing the basis to solutions of
the above fiavor [ADMSS8, ADS89] to two for-
merly open problems, the bounded-probabilistic-
consensus problem of [A8R8) (requiring to soclve
the probablistic-consensus problem of [CIL87)
without using an atomic coin-flip operation).
and the fifo-f-exclusion problem of [FLBB79].

1See Appendir A.

?Bounded time-stamp algorithms for s n:essage pasa
ing environment without faults are very similar to that
described in this paper. Lack of space prevents us from
describing it.

The only known solutions to the latter problem
[DGS88, P88), achieve weaker forms of fairness
than the original test and set based solution of
[FLBB79).

Though one might think that the price of intro-
ducing such a powerful modular transformation
would be a blowup in memory size or number
of operations, this is hardly the case. The con-
struction presented in the paper requires n regis-
ters of O(n) bits each, meeting the lower bound
of [IL87] for sequential-time-stamp-system con-
struction. Though because of lack of space, a
complete comparison table cannot be provided
in this paper, one example of the efficiency of
the ctss solutions is given by the famous prob-
lem of multi-reader-multi-writer atomic register
construction. A simple solution based on trans-
forming the unbounded [VA86] protocol (See
Appendiz A for a description), has the same
space complexity of the only proven algorithm
[PB87, S88), yet a better time complexity, O(n)
memory accesses for a write, O(nlogn) for a
read, as compared with O(n?) for either in the
former. Concurrent time starnp systems are in-
formally defined in Secfion 2, and implemented
in Section 3. Rigorous formal definitions and cor-
rectness proofs based on the formalism of Lam-
port [L.86a, L86ic] will be presented in the full
paper.

2 Concurrent Time Stamping

To provide the reader with a better intuition for
the more abstract formal definitions presented
later, the properties of a concurrent-time-stamp-
system are first outlined informaily via the exam-
ple of its unbounded nafural-numberbased imple-
mentation.

Informially, the natural-number based clss con-
sists of n registers of unbounded size, each writ-
ten by one of n asynchronous processes and read
by all others. The labels are natural numbe:s
with the usual ordering among them® Each pro-
cess can execute infinitely many lubeling or scan
operations, any number of them concurrently
with the operations of other processes. The scan

3Process id's are added lesicographically to break sym-
metry, a well known technique which will be referred to
in the sequel.




is the operation of collecting a set of labels ¢,
one of each process, by executing a sequence of
reads of the labels in an arbitrary order. The la-
beling operation is simply a collecting of all the
labels followed by a write of maz(¢) + 1. The la-
bels written during labeling operations are mono-
tonically increasing, and, though some were pos-
sibly created concurrently with others, define a
total order on all labeling operations ever per-
formed. Since for any two labeling operations
that are non-concurrent, the order among the la-
bels reflects the order among the operations, this
ordet defines the manner in which all abeling op-
erations could be senalized. Though no process
ever knows all of this order, the order among the
subset of labels returned by any scan is in fact
the same as the total ordering on all the label-
ing operati .:*, nn matter how many labeling
operations occurred while the labels were being
scanned!

A Concurrent Time Stamp System is an abstract
data type shated among n concurrent and com-
pletely asynchronous processes. There are two
waitfree (sce [HB8, AGB88]) operations that any
process can execute on the ctss, a labeling oper-
atior and a scan operation. Assume that each
process’ program consists of these two opera-
tions, whose execution generates a sequence of
elementary operation execulions, totally ordered
by the precedes relation (of {L86a, L86¢], denoted
* —= "), and were any number of scan cperation
executions are allowed between any two labeling
operation executions. The follov.ing

L‘[l] — Si[l] —_ L'_[?l — L._lal —

gl _L gl _ Lo !

[ ] [ Tt
1s an example of such a sequence by process i,
where LE“] denotes process i's k** execution of
a labeling operation, and S,»[k) the k'™ execution
of a scan operation (the superscript [k] is used
for notation. and is not visible to the processes).
A global time model® of operation executious is

‘This property is simple to achieve using unbounded
labels, since the ordering among the labeling opcrations is
just the ordering ainong the labeis. The fact tl.at such a
property is achievable using boundrd size labels is some-
what bafBing. since as the example i Section 9 shows, the
order among the labeling operationa cannot be the order
anng the labels.

*lmplying that for any two operations, a === b or
b ==~ a (for more details sec [L86c, B8S) ).

assumed.

With each labeling operation execution LEH. a

label l’f” is associated. A scan operation re-
turns a pair (£, <), where the label view ¢ =
(g f¥} is an ordered set of labels® (one
per process), and < is an irreflezive tofal order
among them, such that:

1’1 cordering: There exists an irreflerive total or-
der = on the set of all labeling operations,
such that:

a. precedence: For any pair of labeling op-
eration executions LL“] and L[:l (where

possibly p = q), if LE,“] —_— L[:], then
b
L;,“] = L[q].
b. consistancy: For any scan operation exe-
cution S_-["] returning (£, <), el < [5“
if and only if i = L.

The above property formalizes the idea that a
ciss can be envisioned as a black box, inside
which hides a mechanism (a logical clock) asso-
ciating causaily ordered time stamps - from an
infinite wotally ordered range — with each of the
labeling operations, and where scanning is like
peeping into this black box, each scan returning
a view of a part of this hidden ordering. The
black box metaphor is used to stress that it suf-
fices to know of the existence of such a total or-
dering ==, while the ordering itself need not be
known.

One should bear in mind that the asynchronous
nature of the operations allows situations where
a scan overlaps many consecutive labeling opet-
ations of other processes. Also, several consecu-
tive acans could possibly be overlapped by a sin-
gle labeling operation. It is therefore important
that a requirement be made that the label view
£ returned by 5‘(*] be a meaningfui one, namely,
reflecting the ordering among labeling events im-
mediately before or concurrent with the scan, and
not just any possible set of labels. This will

SFor the purposes of many of the applications (such as
atomic register construction), one should allow the labd}
to include an associated value field, denoted t-alue@l‘,k].
For the sake of simplicity, discussion of how this added
feature is implemented will be differed to the appendix.
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eliminate uninteresting trivial solutions and in-
troduce a neasurc of liveness into the system.
This requirement is formalized in the following
definition, where --- 1is the can affect relation
of [L.86a,L86¢].

P2 regularity: For any label £ in # of S
Lé“] —— S'.(kl, and there is no L,[,b1 such that
L’EQ] — L,[,b] . S'-(k]'

Though such a regular concurrent time stamp
system (PI1-P2) would suffice for some appli-
cations (as in Lamport's “Bakery Algorithm™
[L74]), a more powerful monotonsc concurrent
time stamp system will be needed in applications
such as the Multi-Reader-Mults- Writer Atomic
Register construction (as in [VA86]). To this end
the following third property is added:

P3 monetonicity: For any Jabel I’,E“] in € of S,m,
there does not exist an S,-“ ! with a label t’,{”
in its label view £ such that S,-m — SJ-[”

and LY — L) (possibly i = j).

It is important to note that P§ does not imply
that labeling and scan operations of all processes
are gerializable. It does however imply the se-
rializability of the scans of all processes and la-
beling of any oue process. The scans “behave”
as if the labels of any process are monotonically
increasing. in the sense that a scan returns a la-
bel of a labeling operation that is at least as late
as that of any labeling operation of a label re-
turned in the scans preceding it. In the follow-
ing section, a bounded implementation of a con-
current time stamp system from atomic registers
1s presented and informally justified. Rigorous
definitions” and correctness proofs will appear in
the full version.

3 The Implementation

The description of the implementation is divided
I6to two parts, the implenientation of the labeling
operation, and the implementation of the ccan.

’The above definitiuns dc not inlude, for example,
initialization canditione of the tystem.

L =1 & =2 L =1
L Ly e b—— S N
r(t)  r(y)
S1:
rit r(y
2 {1) 1)

Figure 1. Scan Ccicuirent with Sequential La-

belings

The key property of the labeling operation is to
allow establishing the causality-preserving total
order => among all labeling operation execu-
tions. Though it is not required that a process
“knows” what this order is, it is required that
the set of labels that it “chooses™ during a sys-
temn execution is such, that an almighty outside
observer, given & description of the execution and
based on the labels, would be able to reconstruct
==. This almighty observer could thus view a;l
labeling operation execution intervals as if they
were shrunk to points, that is, as if they were
completely sequential.

Requiring this property alone, will however not
be sufficient. As Erample 3.1shows, even if all la-
beling operations are sequential, since labels are
fronn a bounded range (and therefore the same
labels are reused). 2 process scanning the labels
concurrently with ongoing labeling operations,
cannot deduce the order => from the order of
the labels alone.

Exampie 3.1. In Figure I, scgments represent
operation execution intervals, where time runs
from left to right. Two processes s and j per-
foim labeling operations scquentially, j followed
by 1 folloned by many iabelings, till eventually
the labels are reused, and j for example uses the
same label as before. A third process z performs
a scan concurrently with the labelings, reading ¢,
and then £;. S1 and SZ represent possible execu-
tions of this same scan, the only difference being
that many labeling operaiions of other processes
occurred between the reads in S2. In both the




case that the acan is of the form S1 and the case
that it is of the form S2, the values collected are
£, = 2 and ¢ = 1, where the order among the
labels is, say 1 < 2. However, in the case of S1,
j's labeling preceded i's, while in 52, i’s label-
ing preceded j's. Thus, the order of the labels
is not the order among the labeling operations,
introducing an unresolvable ambiguity.

Faced with the above ambiguity, it is clear that in
order to design a scan operation, the properties
of labeling operation implementation should be
such, that even though the order => between any
pair Ll"] and Ll[,” is not conveyed by the order
of their associated labels, the labels do provide
enough information to allow an implementation
of a scan operation. The new implementation
will not require that by reading a pair of labels
of processes i and j, one will be able to establich
the urder among their associated labeling opera-
tion executions. Instead, it will be required that
by reading the labels of i and j niore than once
(yet only a constant number of times), one will be
able to choose from all the labels read, a label of
1 and a label of j, for which the order = among
the labeling operation executions can in fact be
deduced. In the following sections, after present-
ing these additional properties, a scan operation
implementation that utilizes them will be shown.

The basic communication primitive used in the
presentcd implementations is a single-writer-
inulti-reader atomic regisier. Constructions of
such registers from weaker primitives have been
shown in [L86a, L86b, BP87, 1L87, N87). The
concurrent-lime-stamp-system will consist of n
swmr atomic registers v;, t € {l..n}, each v,
written by process 1, read by all, and having val-
ues in some range V. In the unbounded natural
number implementation of a ctss, V 1s just the
unbounded set of natural numbers, and X for
any labeling is the usual irreflexive total ordering
among them. In the following subsections, the
set of possible label values V, together with an
irreflexive and antisymmetric relation X among
them, are defined in terms of a precedence graph®
(V, % ). Each possible label value is a node in
this graph. The order among the labels in any
two registers is the order X established by the
edges of the precedence graph. Based on the

#see (1L.87] for lower bounds on the size of such graphs.

precedence graph, an implementation of the la-
belirng and scan operations will then be provided.
Unlike in the unbounded natural number imple-
mentation, and following the above discussion,
the returned ordering < among labeling opera-

tions is not the same as the ordering % .

3.1 The Labels and the Precedence Rela-
tion

The following is the description of the precedence
graph T™. Though the precedence graph (of un-
bounded size) defined by the natural numbers is
acyclic, this will not be true for T".

Define A dominates B in G, where A and B
are two subgraphs of a graph G (possibly single
nodes). to mean that all nodes of A have edges di-
rected to all nodes of B. Define the following gen-
eralization of the composition operator of [IL87].
The a-composition, Go, H, of two graphs G and
H, where a is a subset of the nodes of G. is the
following non-commutative operation:

Replace every naode v € a of G by a
copy of H (denoted H,) and let H, {or
v) dominate H, in Go, A if vdominates
uin G.

Define the graph T2 to be the following graph of
5 nodes: a cycle of three nodes {3,4,5} (where 3
dominates 5, which dominates 4, which in turn
dominates 3), all dominating the nodes {2,1}.
where node 2 in turn, dominates node 1.

Define the graph T* (a complete tournament) in-
ductively to be:

1. T is a single node.

2. T* = T%0, T*!, where a = {5,4,3,1} and
k> 1

The graph T" = (V, <) is the precedence
graph to be used in the implementation of the la-
beling and scan algorithms of a concurrent time-
stamp system for n processes. For any process
1, each node in T™ corresponds to a uniquely de-
fined label value ¢,. The label can be viewed as
a string £[n..1) of n digits, where each £[k] €
{1...5) is the digit of the corresponding node in



Figure 2: The Recursive Graph Structure for T2
and T3

T+, replaced by a T* subgraph during the k**
step of the inductive construction above. ‘Jhe
digit ¢;[n] is always 1, representing the complete
T™ graph, and if in &, 4[k] = 2. then £[j] = 1
for all j € {k—1..1} {since node 2 is never ex-
panded in the induction step). Therefore, given
any label £;, the T* subgraph of T™ in which its
corresponding node is located 1s identified by the
correspending prefix ¢,[n. k).

To assure that based on the graph T a total
ordering among the label values returned by a
scan can be established, one needs to break sym-
metry among processes having the same label. As
usual. process-ids aie used. Thus, the label & 15
assumed to be concatenated with the id of pro-
cess 1. The label and id are lexicographically or-
dered. ‘This, in terms of the graph T, amounts
to no more than assuming that ecach T! graph
consists of a total order tournament of n nodes,
each process 1 always choosing the ith node in
the order. For the sake of simpiicity this point is
not elaborated on in the sequel.

3.2 The Labeling Operation

Let the collect operation by any process 1 be a
reading of all the registers v;, j € {1.n}, once
each, it an arbitrary order returning a label set ¢
{(not to be confused with £, the output label view
of a scan operation). The label:ng operation of a
process ¢ 1s of the form descrilied Lelow, where

L V" xA{! n} — Vs a labeling function, re-
turning a label value ¢; “greater than” all other
label values®. This is a form similar to the natu-
ral number ctss, where the labeling function £ is
Just maz(¢) -+ 1. However, the interpretation of
“greater than™ is not as straightforward as in the
natural number case.

procedure labeling:

begin
£ .= collect;
v, 1= L(£,1)
end,

The definition of the labeling function L(€.1) pre-
sented below, is bascd on a recursively defined
function £¥(G,€.¢,). which, given a T* subgraph
G, of T, a set of labels £, and a “maximal” la-
bel £, € £in T*, returus the label of a node in
G that is, as termed above, “greater than” the
other labeis. For the sake of simplicity, and since
the collected set of labels £ remains unchanged
in £(£,1) once it is collected (similarly the vari-
able £;, once it 1s computed), it is treated as a
global variable and is not passed as a parameter
in all the utility functions used by L£(£,i). The
following functions are used in defining £:

num_labels(G) - a fuuction that, for the given
label set ¢, returns how many of the labels are in
sub-giaph G;

dom(z) - a function that, for a given digit
z € {1.5} representing a node in the graph
T2, returns the next dominating node; namely,
dem(1) = 2, dom(2) = 3, dom(3) = 4, dom(4) =
5 and dem(5) = 3:

dominating set(£,£) - a function that, for a set
of labels £ C ¢. and a label ¢; € ¢. returns a subset
of labels {¢; € £{¢, X ¢} U {4}, and

maz(€) - a function that, for a set of labels ¢ c¢,
returns a label

(€ € £ : [donunating_sct(€,€,)] <
[dominating_set(. .Y € ),

the maximmal label, 1 ¢, the one least dominated
within this set.

?Initially, all labels are on node 111..11, the node dom.
inated by all others in T".




Denote the concatenation operation, where G is
a string and z is a digit, by G.z. The following is
thus the definition of the labeling function £(£,1).
The subgraphs G are identified with the relative
prefixes, where T™ is identified with the label 1:

function L (¢,1);
function £¥(G);
begin
if k= 1 then return G;
ifl[nk}#G
then return £¥'(G.1);
3 ifb[nk—1)=G2
then return £*1(G.3);
4: ifk > 2 then
if £.[k-2] € {2,3,4,5} and
(biln.k=1] # £:[n..k 1))
then return £¥'(G .dom(¢, (k-1]));
5: if (num_labels(€.[n..k—1]) < k-1) or
((num_labels(€:fn 2-1]) = k-1) and
(&i[n.k=1)=L,[n. " -1]))
then return £*Y(G €. [k-1))
else return £*'(G.dom(€.[k-1)));
end Ct;
begin
£; := maz(dominatingset(£,£;));
return L™(T"),
end (;

W -

For the purpose of giving the reader some intu-
ition about the properties of the labeling opera-
tion, let it be assumed that one can talk about
the values of the labels of all processes at “points
in tinie”. Though the goal in the remainder of
this section is to show how the labeling operation
executions allow to define the order =, it will
first be shown that they meet a much simpler re-
quirement. The requirement is that at any point
in time, the subgraph of the precedence graph T
induced by the labeled nodes (those whose corre-
sponding label is written in some v;), contains no
cycle. Since T™ is a complete tournament, this
implies that at any point in time, all labels are
totally ordered.

The labeling operation exccutions maintain
two “invariants,” namely, that at any point in
time (1) there are labels on at most two of the
thiree nodes in any cycle of any subgraph T* {(the
cycle consists of “supernodes” {3,4,5}), called su-
pernodes since they are actually T*-! subgraphs),

and (2) there are no more than k labels in the cy-
cle of any subgraph T*. Maiutaining the second
1nvariant is the key to maintaining the fiest, and
the first implies that at any point in time, there
are never any cycles among labels.

The manner by which the invariance of (1) and
(2) 1s preserved, is explained via several exam-
ples. In these examples, T3 is a precedence graph
for a system of three processes z, y and z. All ex-
amples start at a point in time where £{*! = 134,
e =135, and €/) = 141, that is, all labels are
totally ordered by X .

Example 3.2. Assume that the following se-
quence of labeling operation executions occur se-
quentially. Process y performs L,EM], reading
£l l’ym and £{, and moving, based on £ (£, y)
to l,‘ml = 142. Process z performs L™, read.
ing the new Jabel /5””, and thus moving to the
T? subgraph 14, (LI = 144, LI = 145,
Léml = 143..), maintaining the above invari-
ants, because tiie T2 graph is a precedence graph
for 2 processes. If at some point £ moves, in Li’”’”
it will read the labels of both z and y as being in
the T? subgraph 14. Since num_labels('14')=2,
by line 5 of L (¢,1), z will move to fl‘"'” = 151.

The reader can convince himself that following
any labeling operation execution Ll by some
process z, the above invariants hold, and that
for the set £ of labels that were read in L!%'s col-
lect operation (denoted read(L,(C])). it is the case
that (V£ € read (L)) (el % £]9), that is, the
new label chosen is greater than all those read.

As seen in the following example, in the con-
current case, more than k labels may move into
the same T* structure at the same time. It is thus

not immediately clear why the second invariant
holds.

Example 3.3. Assume that the following se-
quence of labeling operation executions occur
concurrently. Processes r and y begin perform-
ing Ll"“] and Ly“l concurrently, reading [,[.a},
[,Eb] and [,[c) ard computing £, such that [l"“] =
[‘[,H']] = 142. If they then continue to complete
their operations by wnting their labels. though
they have the same node as a label, they were




concurrent, and can be ordered by relative 1d. If
any of them then continued to perform a new la-
beling operation, since num_labels('14’) > 2, it
would choose label 151, not entering the cycle.
However, let us suppose that they do not both
complete writing their labels, that is, r stops
just before writing e o vy, while y writes

I,Em] = 142. Process z lhen performs L,[OH],

reading the new label 7" and the old label £,

thus moving to L,[m] = 143. Processes y and 2

continue to move into and in the cycle of the T?
subgraph 14, since they continue to read z's old
label. Then, at some point r completes Ll
and there are three labels in 14 (two of them in
the cycle). However, if £ now performs a new la-
beling L3 i will read the labels of both z and
y a8 being in 14. Since num_labels('14') > 2, by
line 5 of £ (£,1), z will move to [,[M'?] = 151, not
entering the cycle.

Generalizing the above example. even if many
processes move into a 1'% subgraph. without read-
ing one another’s labels, at most k of them will
enter the cycle in T*. The reason is the following
well known flag principai'®:

If k+1 people, each first raise a flag. and
then count the number of raised flags,
at least one person must see k + 1 flags
raised.

By the definition of the labeling function (, each
process moving into the cycle of a 7% subgraph,
must first move to either supernode 1 or 2 1 T*,
only then can it perform a labeling 1nto the cycle.
The move to 1 or 2 is the raising of the fiag, and
the move into the cycle is the counting of all flags.

The following example shows that even though
by the above, there are at most k labels at a tinie
in any T* structure, the sets of labels read in a
labeling operction execulion, may contain cycles.
Example 3.4. Process : begins performing
L,(m). reading (k) = 134 Process y then per-
forms LI reading €1 € and (17 and sov-
ing to dHl] = 142, Process x performs L,(-Mll,

18Proof follows by the fact that il.: last perenn 1o atare
counting flage must have seen k + 1 flags raise~d.

. . bl i,
reading the now lahoi Il nd 6 ], and thus by

: ot 1]
line 5 of £, moving to £ =

151. Process y
542) a+

then perforis 1) " and nioving
to l,(bm = 152 Finally. process : reads (,[,m) It
thus read €/" = 134, ¢} = 152, and €17 = 141,
three labels on a cycle

. trading l‘l.

In order to select a label donunating all others, @
must establish where the "maximal label” among
them is. To overcome the problem that the labels
read form cycles (as 1 the ahove example). the
labeling function £ (/. :) dors not take mmto ac-
count “old values” such as €% it considers only
t 1e" s that dominate the current label £/,
' - maintain the first invariant, z should

Hl- 131. to Jdominate the current
Ir both r and y. However. there is seem-
1 a» oblem. since : did not read the label

;lroh] = 151, and so. how can it decide what label

to choose in order to dominate i,["“} = 1317 The
solution is due to the furt that - can duduce the
existence of [}H'] = 151, since an all of the cycle
of T2 there are 3 labels, and in crder to move to
l‘[.““] = 152, y must have read some label in node
151 of the 1'% subgraph 15 By simple elimina-
tion this must be the label of £. This simple rule
is maintained by application of linc 4 in £. How.
ever, if the above scenario occurred 1n the cycle
of a T* graph, where k > 3, then in order to al-
low the same reasconing as above, it nwust be that
if = read £/ = 152 (or ™% € {153,154, 155)),
it can conclude that k — 2 other labels were read
by L,I,b'ﬂ] i the 7% subgraph 15. It is for this
purposc that supernede 1 of tny 7% graph where
k > 2. is not a single node, but a 7%~ subgraph.
A process can thus choose the node 2. only af-
ter it established that there were k — 1 labels in
supernode 1. Since node 2 is a “bridge,” that
some process must “cross’ (choose) before any
process can move into the cyecle, the above rea-
soning holds.

Though the above novacants hold. 1t follows
from Ezample 3.4 that the property that the cho-
sen new label 1s greater than all those read, true
for sequential labeling operation exceutions. does
not hold in the concurrent case.  Fortunately,
there is a similar property that does hold, a prop-
erty that will prove important in the implemen-
tation of the scan. Let the notation r,([/l[k]) and




u'(LI—[k]', denote the read of v; and wrir of v; dur-

ng a labeling operation execution L.m by a pro-
L6588 1.

Definition 3.1. Labclinf Llﬂ 13 obscrved by
L,m (denoted I,,(°] ) j,ylb) f r,(L“’) - l,l-al or
there ezists an L!L] such that r,(],y ) = (1[41 and
L s 11

The relation ¥ is actually the transitive clo-
sure of the read relation. Let manmaLobs(LLal)
be the set of operation executions

{L,Eb] |y € {1..n}, L}b] o L1 gng
(VLE DL — L then LP) goa 1)),

that is, including the “latest™ label observed for
each process. In the concurrent executions, in-
stead of the new label being greater than al! the
labels read, it is the case that

(V[,[,b] € manmaLobs(Lial))(l,[,b] X el

namely, the new label chosen is great.r than the
latest of those observed. For the labeling Ll
of Erample 8 4, though z read ¢! = 143, and
(1) - [a) .
177 X £;7° 1t as the case that its maximal ob-
served label is €171 and l** x gl

Finally, the following is the irreflexive total ot-
der == on the labeling operation executions as
required by property P1.

Definition 3.2. Given any (wo distinct lgbeling

operation erecultons L,!"] and LM, L —= L,!b]
1f esther

Lo e L0 or
o L¥ape LY LMy LI and €l % gf!).

Intuitively, since with every L?] there i8 an asso-
ciated label ll“], = 15 a “lexicographical” or-
der on a pairs (L;(-"],[,["]), The first element
in the pair is ordeted by <¥%  a partial or-
der that is consistant with the ordering — (if
L — Lébl then in L}b]. y read £ or a later
label). The second elenent is ordered by %<,
an irreflexive and antisymimetric relation. In the
full paper it is proven, that the “static” relation
% on the labels, completes the “dynamic” par-
tial order 34 (o a total order on all labeling
operation executions.

3.3 The Scan Operation

The scan algorithm consists of two main steps,
performing a sequence of 8nlogn collect opera-
tions ! and analyzing the collected labels to se-
lect a set £ for which an order < can be returned.

Let £<™* ¢ € {1.8)}), m € {1..[logn]}. and
k € {1..n} denote variables, each holding a set of
labels {£;"™*, . £5™¥) collected in the ¢** col-
lect operation execution of the m'™ level of the
k'® phase Let half(r) and other_half(r) be com.
plementary functions, that for a given set r, re-
turn two disjoint subsets rl and r2, such that
rlur2=rand -1 <|rl|--]r2| <1

The scan algorithm returns the set of labels .
one of each process, and the ordering < among
them is represented by the vector O holding a
permutation of numbers in {1..n}, the number in
the i'® position representing the relative order of
the label £,'2.

function scan;
function select(m,k,r);
begin
if |rj = 1 then return (z : r € r);
else
r:= select(m—1,khalf(r));
y := select(m—1,k. other half(r))
if (3c1,c2 € {1..8})
(cl <e)n(esr™k x fv"-"‘"‘)
then return y
else return r
fi,
fi;
end select,
begin
R = {1.n};
O[l..n] = 0,
i:=0;
for k . =1tondo

i1Note that the scan algorithm requires a scanning pro-
cess only to read other labels, and does not require it ta
write. This lack of a need for two way communication
between the scanner the labelers is a property found in
the implementation of the natural number based rtsa.

13For the sake of simplicity, though the returned labels
in £ could coentain various data associated with the given
labeling operation {that is, data written into the register
v, together with the impiementation label value), the scan
tmplementation, will returmn only the implementation label
value ¢,




for m := 1 to [logn] do
for c ;= | to 8 do
g™k = collect
od;
od;
od;
for k .= ndownto § do

s := select([logn]. k. K):
o= fy (e2Tloentry
Ols] := k;
R:= R - {s}:
od;
return (£.0);
end scan:

The scan operation, as noted above, begins
with a sequence of 8n[logn] collect operations,
for which the returned labels are all saved in a set
of variables £<™* ¢ ¢ {1.8}. m € {1..[logn]},
and k € {1..n}. The remainder of the algorithm
defines how to chcose 1 of these labels, one per
process, for which < (1.e. =) can be established.
The following is an outline of how this selection
process is perfonmed.

By the order of label ccllection, the labels read
in phase k = 1 are the earliest to have been col-
lected, those for k = n the last. From the 8[logn]
collected label sets of cach phase, the algorithm
selects one label. The selected label in the k'
phase will be the k largest in the order <. As
it turns out, to guarantee that this is the case,
it suffices that the following Condition I holds
{slightly abusing notation in the defimtion):

For the label £2:1°8"1 ¥ collected in the
[log n]** level of the & phase, and any
label £}! ¥ of & process y € I, collected
in the 1°" level of the k*» phase. it is the
case that L8.1.k = [ B0k E

y ‘4 :

Maintaiming Condifion ! is sufficient to assure
that the label returned i the £ phase is the
k largest. Let it be shown that the labeling op-
eration execution of a label returned 1t a phase
k' < k, preceded (in the ordering =) that of
the label returned in the phase k. ‘The follow-
ing shows that this is the case for the labels
f?'['os'ﬂ"k, [:'['03 "1Aand BT A2 ot imed
in phases k, k~1, and &k - 2 respectively. The

same line of proof can be extended inductively to
all k' < k.
;8 [logn].k

By Condition 1, I,,f LA s g . Since
the read of l:-"" was performed after that of

l:'“o“]'*"’. either th: label of the same label-

ing operation execution was read in both cases,

y o ognl.k o
or L,,a‘t ognli-l L gnlk By similar rea-

t ! k-2 1o, 14 1_k_ .
soning L‘B.f ognl. = 1138, flogn] 1| which l’."
ransitivi f =— 1 L k-2
transitivity o ) establishes L' o8 —4

Ls.flogn]_t_

The select function apphed in any phase, is a
recursively defined “winner take all” type selec-
tion algorithm, among all the processes in R. It
returns the id of the “winner,” a process s meet-
ing Condition 1. At any level m of the applica-
tion of select select(im k r). the winners of the
selections at level m — | are paired up. and from
each pair one “winner” process is selected, to be
passed on to the (m+ D™ level of selection. Af-
ter at most [log |R|) levels, «, the winner of all
selections, 1s returned

Based on the definition of the select function,
maintaming the following Condition 2 suffices to
assure that the label of the process s returned by
select(m, k,r). mects Condition .

Of the two processes r and y i the ap-
plication of select at level m of phase
k, the one returned, say r, 1s such that
Lyl'""k = LE™E where fy"'""' and
£83m.k regpectively are the labels asso-
ciated with these iabeling operation ex-
ecutjons.

Maintaining Condition 2 suflices for the follow-
mg reason. If at level min process © was se-
lected between r and y, and at level m~1 pro
cess y was selected between y and =, by the
same iine of proof as above, from L} ™t =
LEmk and [}tk =y 1 31k it follows that
L:l,m--‘z,k == LgAm k'
Condition 1.

By wducuon this implys

Recall Erample ¥ 1. nuplymg that it is impos-
sible to establish the order ==» among two label-
ing operation executions, froan the order among
tneir associated labels alone. To overcome this
problem, instead of attempting to decide the or-
der between two given labeling operation execu-
tions, the algorithm wiil choose a pair out of




several given labeling operation executions, for
which the order => can be determined. Thus,
to allow the select operation at level m of phase
k, to choose a “winner” process, say z, for which
Lim*k =y [8™F labels of z and y from 8 con-
secutive collects will be analyzed.

Let it first be shown that if the following Con-
dition 3 holds for y, that is

(3C1,C2 € {18})(61 < C2) A (e:l.m,l‘ ¥
[c?,m,k)
¥ 1

then L™t = L™t (this, because of the
order of label collecting, will imply L}™* —
LEm™E)  Assume by way of contradiction
that L™ = L2mE Gince £51™F V<
l;z'""*‘ it must te by the definition of =
that Lf2m* sre [cbmE Tt cannot be that
£e2m™E € marimalobs(LS'™F), since by the
properties of the labeling scheme, for the label
e € nazimalobs(LEV k), €I Vo getmik,
Thus, there must be a diflerent labeling op-
eration execution [,[,b] € maziqml_oba(L:"'""‘),
Lprmt — L. This label £}*) was already ob-
served (i.e. must have been written), before the
end of the read of £5'™*. Thus, £, or a la-
bel later than it, must have been read instead of
€52, in the collect ¢2 of level m in phase k, a
contradiction.

It remains to be shown that if Condition § does
not hold for y, it is the case that L}™* =
L3m™*% and r can be correctly returned. As
sume by way of contradiction that (ondition 3
does not hold for y. It cannot, by the same
arguments as above, be that Condition 3 hcids
for z, that is, (3cl,c2 € {1..8})(cl < ¢Z} A
(€1 % ££2™ %) Therefore, it must be that
there are four nonconsecutive collects of £¢4™k
¢l €{1,3,5,7}. and four nonconsecutive collects
of £2m*% 2 € {2,4,6,8) such t>)t the labels

£k el e {1,3,5,7) arc ull - from cne
another, and the iabels £52™* . 7,4,6,8)
are all different from one anothe < reason i

that if any two of them are the saine, say é'y:""‘-"
and ¢2™*, then in order for the above Condi-
tton 3 not to hold for £ ¢l = 4 and ¢2 = 3, it
must be that €™ % (3m*% But since {27
and £2™* are the same, it would follow that

(Admr X% 5™k and Condition 3 would hold for
y, a contradiction.

To complete the proof, it remains to be shown
that if the labels £;1™%, c1 € {1,3,5,7} are all
different from one another, and the labels £54™ %,
c2 € {2,4,6,8} are all different from one another,
then [} ™* = L8mt, The situation above is
such that during the 8 collect operations, each
of the processes xr and y executed a new labeling
operation at least 3 times. I¢ can be formally
shown!3 that the third new labeling operation
execution L3™ ¥ after £ and y moved at least
3 times, occurred completely after the initial la-
beling of y, that is, L}™* —e L2k,

Formal proofs will be presented in the full pa-
per. As a final comment, note that for algorithms
where only the maximum label is required, and
not a complete order among all returned labels
(like in construction of a mrmw atomic register or
solutions to the mutual exclusion problem), only
one phase of label coilection is required, that is,
only 8log n collects'?.
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A Some Examples of Applications

The following is a simple unbounded algorithm
for solving the famous problem of constructing a
mrmw alomsc register , from swmr atomic regis-
lers. This solution is a versior (due to Li and Vi-
tani [LV88)) of the elegant and simple unbounded
Vitani-Awerbuch algorithm [VA86]. It 18 based
on the use of a natural number ctss. Each pro-
cess § writes to 8 mrsw alomic register denoted v;.
Each register contains two fields, & label, that is,
a nalfural number, and a value associated with it
(value@label using the rotation of [LV88)). The
following is an implerentation of the read and
wrile by a process 1.

s




function read;

begin
read vy,..,vn;
select the mazimal time-stamp £, ;
return value@/{,,

end;

procedure write(value);
begin
read vy, .., vn;
select the maximal time-atamp ¢, ;
write inte v; the value and £, + 1;
end;

Note that the write operation is just a labeling,
and the read is a scan followed by returning the
value asgociated with the maximal label. As men-
tioned earlier, one would need to let the labels
of the ctss include their associated values. Re-
placing the above unbounded operations by the
Labeling and Scan operations of the bounded
concurrent-time-time-stamp system will immedi-
ately produce a bounded solution to the problem.
Note again that the general implementation of
the scan operation, as described in this extended
abstract requires 8n log n collects, but since only
the maximum (and not & total ordering) of the
labels is required, it can be reduced to 8 log n col-
lects, as will be elaborated upon in the full paper.

The following is a fifo solution to the {-Excluaion
Problem due to [ADMS88), based on the use of a
ctss. In the following, the scan and label opers-
tions of process i are as described, wheze the ctss
is implemented using swmr atomic registers, and
x;, i€ {1,..,n} are swmr safe registers.

do forever
I, .= lrue;
labeling,
L: (€, <) = scan;
if |{jlzy A (€ <€)} > 1 then goto L %
crslical seclion
z, := false;
remawnder section
od,

The only known bounded fifo solution to the
problem, due to [FLBB79] was based on the use
of a strouyg form of Test and Set. It was un-
known whether a level of faitness higher than n?-
wailing (see [DGS88)) without use of teat and sel

can be achieved. It is interesting to note that
the amount of shated memory needed meets the
lower bound of ([FLBB79). If one is interested in
the unbounded implementation, just substitute
£ := maz(¢y,..,£n)+ 1 for the labeling operation,
and read({y, .., £,) for the scan. Notice that for
! = 1, the above is a very simple solution to the
fundamental mutual ezclusion problem of [D85).
Other algorithms such as the unbounded imple-
mentation of a ciss in the Bakery Algorithm of
Lamport [L74], can also be modularly replaced,
and by adding a simple modification to allow the
ctss to include restarts, the solution can be made
to be resiliant to restart faslures [L74, L86d).
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